

Metamask Snap Audit
Report for Openverse

Testers:

1. Or Duan
2. Avigdor Sason Cohen

1

Table of Contents
Table of Contents 2
Management Summary 3
Risk Methodology 4
Vulnerabilities by Risk 5
Approach 6

Introduction 6
Scope Overview 7
Scope Validation 7
Threat Model 7
Security Evaluation Methodology 8
Security Assessment 8
Issue Table Description 9

Security Evaluation 10
Security Assessment Findings 14

Origin Spoofing 14
Non-standard Signing Implementation 15
Missing Transaction Broadcasting Functionality 16
Missing Anti-Replay Protection 17
Missing Input Sanitization for User-Facing Content 18
Confusing Dialog Box 19

2

Management Summary

Openverse contacted Sayfer Security in order to perform penetration testing on Openverse’s
MetaMask Snap, Openverse Wallet, in 02/2025.

Before assessing the above services, we held a kickoff meeting with the Openverse technical team
and received an overview of the system and the goals for this research.

Over the research period of 2 weeks, we discovered 6 vulnerabilities in the system.

In conclusion, several fixes should be implemented following the report, but the system's security
posture is competent.

After review by the Sayfer team, we certify that the high-risk vulnerability mentioned in this
report has been fixed and that all others have been acknowledged by the Openverse team.

3

Risk Methodology

At Sayfer, we are committed to delivering the highest quality penetration testing to our clients.
That's why we have implemented a comprehensive risk assessment model to evaluate the severity
of our findings and provide our clients with the best possible recommendations for mitigation.

Our risk assessment model is based on two key factors: IMPACT and LIKELIHOOD. Impact refers to
the potential harm that could result from an issue, such as financial loss, reputational damage, or a
non-operational system. Likelihood refers to the probability that an issue will occur, taking into
account factors such as the complexity of the attack and the number of potential attackers.

By combining these two factors, we can create a comprehensive understanding of the risk posed by
a particular issue and provide our clients with a clear and actionable assessment of the severity of
the issue. This approach allows us to prioritize our recommendations and ensure that our clients
receive the best possible advice on how to protect their business.

Risk is defined as follows:

 Overall Risk Security

 HIGH Medium High High

MEDIUM Low Medium High

LOW Informational Low Medium

 LOW MEDIUM HIGH

 LIKELIHOOD

4

Vulnerabilities by Risk

Risk Low Medium High Informational

of issues 3 2 1 0

● Low – No direct threat exists. The vulnerability may be exploited using other vulnerabilities.
● Medium – Indirect threat to key business processes or partial threat to business processes.
● High – Direct threat to key business processes.
● Informational – This finding does not indicate vulnerability, but states a comment that

notifies about design flaws and improper implementation that might cause a problem in the
long run.

5

Approach

Introduction
Openverse contacted Sayfer to perform penetration testing on their MetaMask Snap application,
Openverse Wallet.

This report documents the research carried out by Sayfer targeting the selected resources defined
under the research scope. Particularly, this report displays the security posture review for
Openverse Wallet and its surrounding infrastructure and process implementations.

Our penetration testing project life cycle:

6

Scope Overview
During our first meeting and after understanding the company's needs, we defined the application’s
scope that resides at the following URLs as the scope of the project:

● Openverse Wallet
○ Audit commit: 6517c60c29399823ccb41dbcbd3cd2602762baaa
○ Fixes commit: 7eec0ae321506b92e7f949a18917bcec360ba6f7

Our tests were performed from 10/02/2025 to 18/02/2025.

Scope Validation
We began by ensuring that the scope defined to us by the client was technically logical.
Deciding what scope is right for a given system is part of the initial discussion. Getting the scope
right is key to deriving maximum business value from the research.

Threat Model
During our kickoff meetings with the client we defined the most important assets the application
possesses.
We defined the largest current threat to the system as phishing attacks.

7

https://github.com/openlab-openos/openverse-snap/commit/6517c60c29399823ccb41dbcbd3cd2602762baaa
https://github.com/openlab-openos/openverse-snap/commit/7eec0ae321506b92e7f949a18917bcec360ba6f7

Security Evaluation Methodology
Sayfer uses OWASP WSTG as our technical standard when reviewing web applications. After gaining
a thorough understanding of the system we decided which OWASP tests are required to evaluate
the system.

Security Assessment
After understanding and defining the scope, performing threat modeling, and evaluating the correct
tests required in order to fully check the application for security flaws, we performed our security
assessment.

8

https://github.com/OWASP/wstg/tree/f4fdd93e9673c087cfe2472535a808e5cdf938c5

Issue Table Description

Issue title

ID SAY-??: An ID for easy communication on each vulnerability

Status Open/Fixed/Acknowledged

Risk Represents the risk factor of the issue. For further description refer to the
Vulnerabilities by Risk section.

Business
Impact

The main risk of the vulnerability at a business level.

Location The URL or the file in which this issue was detected. Issues with no location have no
particular location and refer to the product as a whole.

Description Here we provide a brief description of the issue and how it formed, the steps we
made to find or exploit it, along with proof of concept (if present), and how this issue
can affect the product or its users.

Mitigation Suggested resolving options for this issue and links to advised sites for further
remediation.

9

https://docs.google.com/document/d/1nCIFRnB2xR5D-O0BNwRwLAhWmVEw6wCYfLLeHRYxrnQ/edit#heading=h.5bxypuyhbhg7

Security Evaluation
The following tests were conducted while auditing the system

Information
Gathering

Test Name Status

WSTG-INFO-01
Conduct Search Engine Discovery Reconnaissance for
Information Leakage

Pass

WSTG-INFO-02 Fingerprint Web Server Pass

WSTG-INFO-03 Review Webserver Metafiles for Information Leakage Pass

WSTG-INFO-04 Enumerate Applications on Webserver Pass

WSTG-INFO-05 Review Webpage Content for Information Leakage Pass

WSTG-INFO-06 Identify application entry points Pass

WSTG-INFO-07 Map execution paths through application Pass

WSTG-INFO-08 Fingerprint Web Application Framework Pass

WSTG-INFO-09 Fingerprint Web Application Pass

WSTG-INFO-10 Map Application Architecture Pass

Configuration and
Deploy Management

Testing
Test Name Status

WSTG-CONF-01 Test Network Infrastructure Configuration Pass

WSTG-CONF-02 Test Application Platform Configuration Pass

WSTG-CONF-03 Test File Extensions Handling for Sensitive Information Pass

WSTG-CONF-04
Review Old Backup and Unreferenced Files for Sensitive
Information

Pass

WSTG-CONF-05
Enumerate Infrastructure and Application Admin
Interfaces

Pass

WSTG-CONF-06 Test HTTP Methods Pass

WSTG-CONF-07 Test HTTP Strict Transport Security Pass

WSTG-CONF-08 Test RIA cross domain policy Pass

WSTG-CONF-09 Test File Permission Pass

WSTG-CONF-10 Test for Subdomain Takeover Pass

WSTG-CONF-11 Test Cloud Storage Pass

Identity Management
Testing

Test Name Status

WSTG-IDNT-01 Test Role Definitions Pass

10

WSTG-IDNT-02 Test User Registration Process Pass

WSTG-IDNT-03 Test Account Provisioning Process Pass

WSTG-IDNT-04
Testing for Account Enumeration and Guessable User
Account

Pass

WSTG-IDNT-05 Testing for Weak or unenforced username policy Pass

Authentication
Testing

Test Name Status

WSTG-ATHN-01
Testing for Credentials Transported over an Encrypted
Channel

Pass

WSTG-ATHN-02 Testing for Default Credentials Pass

WSTG-ATHN-03 Testing for Weak Lock Out Mechanism Pass

WSTG-ATHN-04 Testing for Bypassing Authentication Schema Pass

WSTG-ATHN-05 Testing for Vulnerable Remember Password Pass

WSTG-ATHN-06 Testing for Browser Cache Weaknesses Pass

WSTG-ATHN-07 Testing for Weak Password Policy Pass

WSTG-ATHN-08 Testing for Weak Security Question Answer Pass

WSTG-ATHN-09
Testing for Weak Password Change or Reset
Functionalities

Pass

WSTG-ATHN-10 Testing for Weaker Authentication in Alternative Channel Pass

Authorization Testing Test Name Status

WSTG-ATHZ-01 Testing Directory Traversal File Include Pass

WSTG-ATHZ-02 Testing for Bypassing Authorization Schema Pass

WSTG-ATHZ-03 Testing for Privilege Escalation Pass

WSTG-ATHZ-04 Testing for Insecure Direct Object References Pass

Session Management
Testing

Test Name Status

WSTG-SESS-01 Testing for Session Management Schema Pass

WSTG-SESS-02 Testing for Cookies Attributes Pass

WSTG-SESS-03 Testing for Session Fixation Pass

WSTG-SESS-04 Testing for Exposed Session Variables Pass

WSTG-SESS-05 Testing for Cross Site Request Forgery Pass

WSTG-SESS-06 Testing for Logout Functionality Pass

WSTG-SESS-07 Testing Session Timeout Pass

WSTG-SESS-08 Testing for Session Puzzling Pass

WSTG-SESS-09 Testing for Session Hijacking Pass

11

Data Validation
Testing

Test Name Status

WSTG-INPV-01 Testing for Reflected Cross Site Scripting Pass

WSTG-INPV-02 Testing for Stored Cross Site Scripting Pass

WSTG-INPV-03 Testing for HTTP Verb Tampering Pass

WSTG-INPV-04 Testing for HTTP Parameter Pollution Pass

WSTG-INPV-05 Testing for SQL Injection Pass

WSTG-INPV-06 Testing for LDAP Injection Pass

WSTG-INPV-07 Testing for XML Injection Pass

WSTG-INPV-08 Testing for SSI Injection Pass

WSTG-INPV-09 Testing for XPath Injection Pass

WSTG-INPV-10 Testing for IMAP SMTP Injection Pass

WSTG-INPV-11 Testing for Code Injection Pass

WSTG-INPV-12 Testing for Command Injection Pass

WSTG-INPV-13 Testing for Format String Injection Pass

WSTG-INPV-14 Testing for Incubated Vulnerability Pass

WSTG-INPV-15 Testing for HTTP Splitting Smuggling Pass

WSTG-INPV-16 Testing for HTTP Incoming Requests Pass

WSTG-INPV-17 Testing for Host Header Injection Pass

WSTG-INPV-18 Testing for Server-side Template Injection Pass

WSTG-INPV-19 Testing for Server-Side Request Forgery Pass

Error Handling Test Name Status

WSTG-ERRH-01 Testing for Improper Error Handling Pass

WSTG-ERRH-02 Testing for Stack Traces Pass

Cryptography Test Name Status

WSTG-CRYP-01 Testing for Weak Transport Layer Security Pass

WSTG-CRYP-02 Testing for Padding Oracle Pass

WSTG-CRYP-03
Testing for Sensitive Information Sent via Unencrypted
Channels

Pass

WSTG-CRYP-04 Testing for Weak Encryption Pass

Business logic Testing Test Name Status

WSTG-BUSL-01 Test Business Logic Data Validation Pass

WSTG-BUSL-02 Test Ability to Forge Requests Pass

12

WSTG-BUSL-03 Test Integrity Checks Pass

WSTG-BUSL-04 Test for Process Timing Pass

WSTG-BUSL-05 Test Number of Times a Function Can be Used Limits Pass

WSTG-BUSL-06 Testing for the Circumvention of Work Flows Pass

WSTG-BUSL-07 Test Defenses Against Application Mis-use Pass

WSTG-BUSL-08 Test Upload of Unexpected File Types Pass

WSTG-BUSL-09 Test Upload of Malicious Files Pass

Client Side Testing Test Name Status

WSTG-CLNT-01 Testing for DOM-Based Cross Site Scripting Pass

WSTG-CLNT-02 Testing for JavaScript Execution Pass

WSTG-CLNT-03 Testing for HTML Injection Pass

WSTG-CLNT-04 Testing for Client Side URL Redirect Pass

WSTG-CLNT-05 Testing for CSS Injection Pass

WSTG-CLNT-06 Testing for Client Side Resource Manipulation Pass

WSTG-CLNT-07 Test Cross Origin Resource Sharing Pass

WSTG-CLNT-08 Testing for Cross Site Flashing Pass

WSTG-CLNT-09 Testing for Clickjacking Pass

WSTG-CLNT-10 Testing WebSockets Pass

WSTG-CLNT-11 Test Web Messaging Pass

WSTG-CLNT-12 Testing Browser Storage Pass

WSTG-CLNT-13 Testing for Cross Site Script Inclusion Pass

API Testing Test Name Status

WSTG-APIT-01 Testing GraphQL Pass

13

Security Assessment Findings

Origin Spoofing

ID SAY-01

Status Fixed

Risk High

Business
Impact

User controlled origin may allow malicious dapps to impersonate trusted domains in
confirmation dialogs, leading to phishing attacks.

Location - index.tsx; onRpcRequest()

Description The snap prioritizes the origin value provided in request.params (controlled by the
calling dapp) over the validated origin parameter provided by MetaMask. This
allows attackers to spoof their displayed origin in UI dialogs (e.g., showing
openverse.network while the real origin is phishing.site).

MetaMask’s same-origin policy ensures the origin parameter reflects the true
invoking domain, but the snap ignores this safeguard.

● index.tsx:22

const dappOrigin = (request?.params as { origin?: string }).origin ||

origin;

Mitigation We recommend using MetaMask’s validated origin parameter.

14

Non-standard Signing Implementation

ID SAY-02

Status Acknowledged

Risk Medium

Business
Impact

The usage of a homebrewed signing implementation bypasses MetaMask’s security
model and thereby needlessly increases the risk of key leakage.

Location - index.tsx; onRpcRequest(any, any)
- case signTransaction
- case signAllTransactions
- case signMessage

Description The snap uses tweetnacl to sign raw messages with directly derived private keys
(secretKey), instead of leveraging MetaMask’s native methods, such as
eth_signTypedData_v4. This violates MetaMask’s key isolation principles and
potentially introduces novel vulnerabilities.

● index.tsx:62; case signTransaction

const signature = nacl.sign.detached(bs58.decode(message),

keyPair.secretKey);

● index.tsx:81-84; case signAllTransactions

const signatures = messages

 .map((message: string) => bs58.decode(message))

 .map((message: Uint8Array) => nacl.sign.detached(message,

keyPair.secretKey))

 .map((signature: Uint8Array | number[]) => bs58.encode(signature));

● index.tsx:113; case signMessage

const signature = nacl.sign.detached(messageBytes, keyPair.secretKey);

Mitigation We recommend replacing the custom signing logic with eth_signTypedData_v4.

15

Missing Transaction Broadcasting Functionality

ID SAY-03

Status Acknowledged

Risk Medium

Business
Impact

Signatures are returned to untrusted dapps, which could misuse them.

Location - index.tsx; onRpcRequest(any, any)
- case signTransaction
- case signAllTransactions
- case signMessage

Description The snap signs transactions and messages but does not broadcast them, relying
entirely on the dapp to handle on-chain submission. This increases reliance on
potentially malicious dapps.

● index.tsx:64-67, 115-118; case signTransaction, case
signMessage

return {

 publicKey: bs58.encode(keyPair.publicKey),

 signature: bs58.encode(signature)

};

● index.tsx:86-89; case signAllTransactions

return {

 publicKey: bs58.encode(keyPair.publicKey),

 signatures

};

Mitigation We recommend implementing transaction broadcasting, or alternatively informing
the user that their transaction will be handled by the dapp.

16

Missing Anti-Replay Protection

ID SAY-04

Status Acknowledged

Risk Low

Business
Impact

Signatures can be replayed across chains or contexts, potentially leading to
unintended asset transfers.

Location - index.tsx; onRpcRequest(any, any)
- case signTransaction
- case signAllTransactions
- case signMessage

Description The snap signs raw messages without including chain-specific identifiers such as
chainId, domain separators (e.g., EIP-712 domain), or nonces. Attackers could reuse
signatures on other networks where the same message is valid.

Mitigation We recommend prepending chain-specific prefixes such as
\x19Openverse:\n{chainId} to messages before signing.

17

Missing Input Sanitization for User-Facing Content

ID SAY-05

Status Acknowledged

Risk Low

Business
Impact

The lack of input sanitization increases the risk of phishing or UI spoofing via
maliciously crafted messages containing Markdown or deceptive links.

Location - index.tsx; renderSignMessage(string, string)

Description renderSignMessage(string, string) displays raw user-provided messages
using the <Text> component, which interprets Markdown syntax. An attacker could
inject hyperlinks such as [Legit Site](evil.site) to trick users into approving
malicious content.

● index.tsx:202-209

content: (

 <Box>

 <Heading>Sign message</Heading>

 <Text>{host}</Text>

 <Divider />

 <Text>{message}</Text>

 </Box>

)

Mitigation Replace <Text> with the <Copyable> component for displaying messages to prevent
Markdown rendering and ensure content is treated as plaintext.

18

Confusing Dialog Box

ID SAY-06

Status Acknowledged

Risk Low

Business
Impact

Users may accidentally approve malicious transactions due to information overload
or lack of individual review.

Location - index.tsx; renderSignAllTransactions(string, any)

Description renderSignAllTransactions(string, any) displays multiple transactions in a
single dialog, making it difficult for users to scrutinize each transaction. This
increases the likelihood of approving unintended or harmful actions.

● index.tsx:202-209

for (let i = 0; i < messages.length; i++) {

 uiElements.push(<Divider />);

 // uiElements.push(Text(`Transaction ${i + 1}`));

 uiElements.push(<Text>Transaction {(i + 1).toString()}</Text>);

 // uiElements.push(Copyable(messages[i]));

 uiElements.push(<Copyable value={messages[i]}></Copyable>);

}

return snap.request({

 method: 'snap_dialog',

 params: {

 type: 'confirmation',

 content:

 (

 <Box>

 <Heading>Sign transactions</Heading>

 <Text>{host}</Text>

 {uiElements}

 </Box>

)

[...]

}

19

Mitigation Split bulk transactions into individual confirmation dialogs or add a summary screen
highlighting critical details, for example total value or list of recipients before
approval.

20

We are available at security@sayfer.io

If you want to encrypt your message please use our public PGP key:

https://sayfer.io/pgp.asc

Key ID: 9DC858229FC7DD38854AE2D88D81803C0EBFCD88

Website: https://sayfer.io

Public email: info@sayfer.io

Phone: +972-559139416

21

mailto:security@sayfer.io
https://sayfer.io/pgp.asc
https://sayfer.io
mailto:info@sayfer.io

	
	Metamask Snap Audit Report for Openverse
	
	Table of Contents
	Management Summary
	Risk Methodology
	Vulnerabilities by Risk
	
	Approach
	Introduction

	
	
	Scope Overview
	Scope Validation
	Threat Model
	Security Evaluation Methodology
	Security Assessment
	Issue Table Description

	Security Evaluation
	Security Assessment Findings
	Origin Spoofing
	Non-standard Signing Implementation
	Missing Transaction Broadcasting Functionality
	Missing Anti-Replay Protection
	Missing Input Sanitization for User-Facing Content
	Confusing Dialog Box

	

